INDEX OF REVISIONS

<table>
<thead>
<tr>
<th>REV.</th>
<th>DESCRIPTION AND/OR REVISED SHEETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ORIGINAL ISSUE</td>
</tr>
<tr>
<td>A</td>
<td>GENERAL REVISION</td>
</tr>
</tbody>
</table>

DATE	REV. B	REV. C	REV. D	REV. E	REV. F	REV. G
NOV/14/18 | AUG/19/19 | ESUP | ESUP | | | |
GNIEDU | GNIEDU | RAFAELGOMES | IGORARANTES | | | |
RAFAELJOSE | ANDRÉ LUIS | | | | | |

INFORMATION IN THIS DOCUMENT IS PROPERTY OF PETROBRAS, BEING PROHIBITED OUTSIDE OF THEIR PURPOSE
FORM OWNED TO PETROBRAS N-381 REV. L
SUMMARY

1 INTRODUCTION ... 3
2 REFERENCE DOCUMENTS, CODES AND STANDARDS .. 3
3 OPERATIONAL CONDITIONS ... 5
4 CONSTRUCTION REQUIREMENTS ... 7
5 CONNECTIONS AND TUBINGS ... 8
6 RACK INLETS AND OUTLETS .. 8
7 INSTRUMENTATION ... 9
8 IDENTIFICATION .. 13
9 DOCUMENTATION ... 13
10 ACCEPTANCE TESTS ... 14
11 PACKING REQUIREMENTS .. 14
1 INTRODUCTION

1.1 Objective

1.1.1 This technical specification describes the minimum requirements and basic characteristics of the SESDVS Control Rack for UNIT.

1.1.2 1 (one) SESDVS Control Rack shall be supplied (PN-1210009).

1.1.3 This rack shall be modular, and shall hold the commands for 4 (four) Subsea Emergency Shutdown Valves.

1.2 Definitions

1.2.1 Refer to I-ET-3010.00-1200-940-P4X-002 – GENERAL TECHNICAL TERMS

1.3 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&C</td>
<td>Automation & Control</td>
</tr>
<tr>
<td>CSS</td>
<td>Control and Safety System</td>
</tr>
<tr>
<td>FAT</td>
<td>Factory Acceptance Test</td>
</tr>
<tr>
<td>HPU</td>
<td>Hydraulic Power Unit</td>
</tr>
<tr>
<td>PCS</td>
<td>Process Control System</td>
</tr>
<tr>
<td>PSD</td>
<td>Process Shutdown System</td>
</tr>
<tr>
<td>SAT</td>
<td>Site Acceptance Test</td>
</tr>
<tr>
<td>SESDV</td>
<td>Subsea Emergency Shutdown Valve</td>
</tr>
<tr>
<td>SIT</td>
<td>Site Integration Test</td>
</tr>
</tbody>
</table>

2 REFERENCE DOCUMENTS, CODES AND STANDARDS

2.1 Internal References

2.1.1 Project Documents

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-ET-3010.00-1200-800-P4X-013</td>
<td>GENERAL CRITERIA FOR INSTRUMENTATION PROJECTS</td>
</tr>
<tr>
<td>I-DE-3010.1M-5520-800-P4X-002</td>
<td>AUTOMATION AND CONTROL ARCHITECTURE</td>
</tr>
<tr>
<td>I-ET-3010.00-1210-390-P4X-001</td>
<td>HYDRAULIC POWER UNIT (HPU) FOR SUBSEA SYSTEM</td>
</tr>
<tr>
<td>I-ET-3010.00-5140-700-P4X-003</td>
<td>ELECTRICAL REQUIREMENTS FOR PACKAGES FOR OFFSHORE UNITS</td>
</tr>
<tr>
<td>I-ET-3010.1M-1200-800-P4X-005</td>
<td>FIELD INSTRUMENTATION</td>
</tr>
<tr>
<td>I-MD-3010.1M-5520-800-P4X-001</td>
<td>AUTOMATION AND CONTROL SYSTEM FUNCTIONS - TOPSIDES</td>
</tr>
<tr>
<td>I-DE-3010.1M-1210-888-P4X-006</td>
<td>SESDVS CONTROL RACK - FUNCTIONAL DIAGRAM</td>
</tr>
</tbody>
</table>
2.2 External References

2.2.1 International Codes, Recommended Practices and Standards

API - AMERICAN PETROLEUM INSTITUTE
- API RP-14B DESIGN, INSTALLATION, OPERATION, TEST AND REDRESS OF SUBSURFACE SAFETY VALVE SYSTEM
- API RP-14C ANALYSIS, DESIGN, INSTALLATION AND TESTING OF SAFETY SYSTEMS FOR PRODUCTION FACILITIES
- API RP-14D SPECIFICATION FOR WELLHEAD SURFACE SAFETY VALVES AND UNDERWATER SAFETY VALVES FOR OFFSHORE SERVICE

IEC - INTERNATIONAL ELECTROTECHNICAL COMMISSION
- IEC 60079 EXPLOSIVE ATMOSPHERES
- IEC 60529 DEGREES OF PROTECTION PROVIDED BY ENCLOSURES (IP CODE)
- IEC 60533 ELECTRICAL AND ELECTRONIC INSTALLATIONS IN SHIPS - ELECTROMAGNETIC COMPATIBILITY
- IEC 61000 ELECTROMAGNETIC COMPATIBILITY (EMC) SERIES - ALL PARTS

INMETRO - INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL
- PORTARIA Nº 179 (18 / MAIO / 2010) REGULAMENTO DE AVALIAÇÃO DA CONFORMIDADE PARA EQUIPAMENTOS ELÉTRICOS PARA ATMÓSFERAS EXPLOSIVAS, NAS CONDIÇÕES DE GASES E VAPORES INFLAMÁVEIS E POEIRAS COMBUSTÍVEIS

ISO – INTERNATIONAL STANDARD ORGANIZATION
- ISO 4406 HYDRAULIC FLUID POWER - FLUIDS - METHOD FOR CODING THE LEVEL OF CONTAMINATION BY SOLID PARTICLES
- ISO 16889 HYDRAULIC FLUID POWER -- FILTERS -- MULTI-PASS METHOD FOR EVALUATING FILTRATION PERFORMANCE OF A FILTER ELEMENT
2.2.2 Classification Society

2.2.2.1 The FPSO basic design follows the requirements of Classification Society and its rules and comments were taken into account at the documents.

2.2.2.2 The detailed design shall also be submitted to approval by the same Classification Society. The design and installation shall take into account their requirements and comments.

2.2.2.3 The design, installation and operation shall strictly follow the Classification Society requirements, together with the specific requirements identified in this document, including also all referenced documents requirements.

2.2.3 Certification

2.2.3.1 To prove compliance with area classification, Certificates of Conformity in accordance with PORTARIA INMETRO Nº 179, de 18 / maio / 2010, and its annexes, emended by PORTARIA INMETRO Nº 89, de 23 / fevereiro / 2012, shall be supplied.

2.2.4 Order of Precedence

2.2.4.1 Regarding to minimize conflicts among project documents, except where specific codes and regulations are more stringent, the order of precedence of technical documents shall otherwise be:

- This Specification;
- Project Documents listed on item 2.1.1 above;
- Codes and Standards;

2.2.4.2 Any discrepancy among documents shall be informed to PETROBRAS. It shall not proceed with any such aspect of the work until receiving PETROBRAS answer.

3 OPERATIONAL CONDITIONS

3.1 The SESDVS Control Rack (PN-1210009) shall be installed in open area, hence, all its components shall be adequate to work in the following environmental conditions:

- Temperature: 4 ºC to 45 ºC;
- Relative humidity of air: 100 %;
- Altitude: 30 m;
- Saline environment: 1 mg de NaCl/m³ of air.

3.2 The SESDVS Control Rack shall be appropriated for Zone 2, Group IIA, T3 Classified areas according to IEC-60079 standard. However, according to IEC 61892-7, the rack and all of its components shall be suitable for Zone 1, Group IIA and temperature class T3.
3.3 The SESDVs Control Rack’s exact location on the UNIT shall be according to I-DE-3010.1M-1200-942-P4X-002 - GENERAL ARRANGEMENT.

3.4 The rack shall use a water bases hydraulic fluid with 3 (three) μm absolute filtering.

3.5 Power supply available to SESDVS Control Rack: 24 Vdc \pm10% - 15% (voltage drop on cable not included).

3.6 The hydraulic power for the SESDVS with direct control will be provided by the UH-1210001 (see Technical Specification I-ET-3010.00-1210-390-P4X-001 – HYDRAULIC POWER UNIT (HPU) FOR SUBSEA SYSTEM), through pressure regulator valves at the following level of pressure:

- LOW PRESSURE LEVEL: for operation of the SESDVS, with pressure adjustable from 9,308 kPa (1,350 psi) to 22,752 kPa (3,300 psi).

3.7 The SESDVS Control Rack shall be suitable for operation with any of the following three hydraulic fluids: MacDermid Oceanic HW525P, HW443 or Castrol Transaqua DW. The use of HW525P or HW443 depend if the rack is in operation, pre-operation or in preservation.

3.8 Operation Hydraulic Fluid

3.8.1 The SESDVS Control Rack hydraulic fluid shall be MacDermid Oceanic HW525P or Castrol Transaqua DW (choice to be later taken by PETROBRAS).

3.8.2 For further information, see I-ET-3010.00-1210-390-P4X-001 – HYDRAULIC POWER UNIT (HPU) FOR SUBSEA SYSTEM.

NOTE: Such fluids shall not be indiscriminately mixed, it being accepted only the migration of use from one to the other, with a minimum 12 (twelve) month waiting period for a new migration mixture.

3.9 Preservation Hydraulic Fluid until Pre-Operation phase

3.9.1 In case PETROBRAS specifies MacDermid Oceanic HW 525P fluid, the Rack hydraulic circuit shall be filled with MacDermid Oceanic HW 443 hydraulic fluid from manufacturing until just before pre-operation phase in Brazil, aiming at internal protection against corrosion from the vapor phase of the fluid during possible long weather storage period. In such cases, the HW 443 fluid shall be substituted by HW 525P during the final phase of commissioning and pre-operation in Brazil.

3.9.2 In case PETROBRAS specifies Castrol Transaqua DW fluid, the Rack shall be filled with the same hydraulic fluid from manufacturing until just before pre-operation phase in Brazil, aiming at internal protection against corrosion from the vapor phase of the fluid during possible long storage periods exposed to the elements. In such cases, only completing of the fluid is necessary at the end of the commissioning and pre-operation phase in Brazil.
3.9.3 For further information, see I-ET-3010.00-1210-390-P4X-001 – HYDRAULIC POWER UNIT (HPU) FOR SUBSEA SYSTEM.

3.10 Hydraulic Fluid Cleanliness Class

3.10.1 The SESDVS Control Rack shall be appropriate to operate with Cleanliness Class 19/17/14 according to ISO 4406 (equivalent to Class 8 of NAS1638 Standard). However, the nominal fluid cleanliness class shall be ISO 4406 17/15/12 (equivalent to Class 6 of NAS1638 Standard).

4 CONSTRUCTION REQUIREMENTS

4.1 General Requirements

4.1.1 The SESDVS Control Rack structure shall be modular self-supported closed type panel, with the possibility of actuation of 4 (four) Subsea Emergency Shutdown Valves.

4.1.2 The rack shall have 2 (two) front doors and 2 (two) rear doors, all with transparent polycarbonate windows to allow visualization of the state open/closed of the control valves. The access doors shall allow easy access to the whole extension of the rack, and be fixed by means of continuous hinges made of AISI-316L. The door knobs shall be reinforced.

4.1.3 The rack shall be built of at least AISI-316L stainless steel specification shapes and sheets.

4.1.4 The rack dimensions shall be in accordance with typical layout I-DE-3010.1M-1210-888-P4X-005 - SESDVS CONTROL RACK - LAYOUT.

4.1.5 All cuts and drilling operations shall be done cold.

4.1.6 All pneumatic and hydraulic lines, connections, valves and other internal accessories to the panels, shall be made of AISI-316 stainless steel.

4.1.7 AISI-316L stainless steel shall be used in the manufacture of the supporting skid. The panel plates shall be free of warping, wrinkling, roughness, signs of rust and corrosion, and they shall have the same minimum thickness of 3.175 mm for sides, ceiling, bottom, and doors, and 4.760 mm for panel front side.
5 CONNECTIONS AND TUBINGS

5.1 All tubing and fittings shall be in accordance with I-ET-3010.00-1200-800-P4X-013 - GENERAL CRITERIA FOR INSTRUMENTATION PROJECTS.

5.2 All lines and components operating with hydraulic fluid shall be sized to operate with 3:1 safety factor.

5.3 The removal of any component shall be preferably executed from the front part of the rack and shall not require the removal of other circuits than the one that is being fixed.

5.4 The connection with the SESDVS control rack shall be made at the lower part of the rack through a bulkhead type connection, in line, or at most in 2 (two) lines where 1 (one) is shifted related to the other at half the distance between the connections, to allow connection or disconnection of any line without interfering with the others.

5.5 All lines shall be adequately supported and arranged in a way to avoid damage when in operation, facilitate maintenance and minimize their respective lengths.

5.6 All hydraulic connections in the SESDVS Control Rack shall have a capacity to preserve their sealing for at least 25 (twenty five) years of service.

5.7 If sealant is used in threaded connections, seal shall be made by chemical thread sealant. The usage of Teflon Tape is not allowed.

6 RACK INLETS AND OUTLETS

6.1 Hydraulic Outlets

6.1.1 1 (one) hydraulic fluid return outlet rated LEVEL 3,300 psi, for the actuation of SESDVS, in 3/8” outside diameter tubing with adaptation for a union type outlet for the panel, 9/16” – 18 JIC 37º, class 6,000 psig. This outlet shall not be connected to the HPU.

6.1.2 4 (four) outlets of rated LEVEL 3300 psi, for the actuation of the SESDVS, in 3/8” outside diameter tubing with adaptation for a union type outlet for the panel, 9/16” - 18 JIC 37º, class 6,000 psi.

6.2 Hydraulic inlets

6.2.1 2 (two) inlet at pressure LEVEL 3,300 psi of hydraulic fluid supply for the SESDVS valves, in 1” OD tubing.

NOTE: Hydraulic inlet/outlet diameters shall be confirmed during project development.
6.3 Electric Inlets

6.3.1 4 (four) Inlets for the actuation of the solenoid valves (in 24 Vdc) by CSS.

6.4 Electric outlets

6.4.1 4 (five) outlets for remote valve position (analog signal).

6.4.2 1 (one) outlet analog signal for remote supply pressure monitoring.

6.4.3 1 (one) outlet digital signal for remote return pressure monitoring (voltage free).

6.4.4 The panel rack shall be provided with, at least, 1 (one) junction box for FPSO interconnection. Junction Boxes shall be specified in accordance with I-ET-3010.00-1200-800-P4X-013 - GENERAL CRITERIA FOR INSTRUMENTATION PROJECTS.

6.4.5 Junction boxes shall be supplied with SAK 2.5 mm² terminals.

6.4.6 The cables that conduct the signals from the transmitters to the junction box shall have electrostatic shields that shall not be grounded but rather connected to the terminal at the junction box.

6.4.7 All cased electric devices shall have IP-56 protection level.

7 INSTRUMENTATION

7.1 Instrumentation shall be in accordance with the document I-ET-3010.00-1200-800-P4X-013 - GENERAL CRITERIA FOR INSTRUMENTATION PROJECTS.

7.2 All panels, instruments, materials and equipment proper to be used in hazardous areas, shall have conformity certificates complying with “PORTARIA INMETRO Nº 179, de 18/maj/2010”, and its annexes, changed by “PORTARIA INMETRO Nº 89, de 23/fevereiro/2012” and its annexes, and shall be approved by Classification Society.

7.3 All electrical and electronic devices, beyond mechanical parts of the equipment, shall be designed and constructed in a tropicalized version. Tropicalization process comprises application of reinforced protective resin Class 2 according to IEC 61086 and fungus proof according to ASTM G21 in all printed circuit boards, use of anti-rust materials and accessories and other implementations according to MANUFACTURERS’ experiences and related rules, aiming to provide a robust and reliable construction.
7.4 Transmitter

7.4.1 Each hydraulic supply header and each hydraulic actuator supply line of SESDVs shall have a pressure transmitter. The transmitter on the actuator supply lines shall be used for indirect indication of the position of the valve.

7.4.2 Pressure transmitters shall be in accordance with I-ET-3010.00-1200-800-P4X-013 - GENERAL CRITERIA FOR INSTRUMENTATION AND CONTROL PROJECTS. Also, the following additional requirements shall be met:

- Pressure connection: ½” NPT plug;
- Overpressure: 200 % the operation range;
- Operating range: 0 to 4,000 PSI;
- Seals: appropriate for the specified hydraulic fluid;

7.4.3 The transmitter shall be installed in a manifold with multiple block and bleed valves.

7.4.4 All isolation of electric instruments shall have at least IP-56 protection level and shall be fit to work in environment described in item 3.

7.5 Directional Valves

7.5.1 The diagram of valves shall be in accordance with I-DE-3010.1M-1210-888-P4X-006 - SESDVS CONTROL RACK - FUNCTIONAL DIAGRAM.

7.5.2 The solenoid valves used for the actuation SESDVS shall be 3 (three) way, two positions, piloted operated, fail-safe type, open when energized, with a return spring, according to the type, model and supplier previously qualified by PETROBRAS. Individual power of each solenoid from pilot-operated DCVs shall be less or equal to 3.5W.

7.5.3 The manifold blocks for solenoid valves shall have integrated block valves, as well as one hydraulic supply header LEVEL 3,300 psi, with 6 mm internal diameter, for the SESDVS, each with 3/8” NPT socket connection. The manifold shall also have one internal return header with 10 mm internal diameter, for the same level of pressure as the above, but with ½” NPT female connection.

7.5.4 The valve hydraulic pilots shall be supplied by an independent header fitted with an accumulator and a flow restrictor, so that it doesn’t get affected by a pressure drop at the valve main body when the valve opens.

7.5.5 Directional Valves shall have at least the following characteristics:

- Solenoid actuator with operational voltage of 24V ±25%;
- Maximum power consumption of 3.5W;
- Working Pressure of 1,350psi to 3,300 psi. Working pressure will be defined during Detailing Engineering Design
- Shutdown pressure: 800 psi (alignment to valve return in case of pressure loss);
- Connection: adequate for assembly on manifold (6mm accesses);
- Internal Accesses: 6mm (minimum);
- If is not possible to determine the exact internal passage section, the valve shall be in accordance with the minimum flow x maximum pressure drop curve below;
- Pilot hydraulic supply shall be independent from hydraulic power supply;
- Directional Valve sealing shall be adequate to operation fluid;
- Directional Valve body material shall be AISI 316;
- Solenoids: epoxy box, temperature class F, minimum protection degree IP-56 (adequate for saline ambient) and adequate to operate on environmental conditions established on item 3 (including hazardous area classification);
- Assembly type: manifold – minimum number of 6 valves per manifold;
- Adequate to operate with a water-glycol based hydraulic fluid (as described on this document) which may contain up to 20% on volume of sea water filtered in 10 micron abs.

7.5.6 Directional Valves minimum required performance during service life:
- Maximum flow in closed position: 0.1 cm³/min;
- Maximum return flow with valve open: 0.0 cm³/min;
- Maximum flow when valve transitioning from closed to open position: 0.1cm³/min;
- Valve Electro mechanic maximum response time: 1s;
- Maximum operation current (Transient): 1A;
- Holding current at 24Vdc: 150mA;
- Maximum Holding current: 300mA;
- Minimum operation cycles without failure or sealing alteration: 5000;
- Minimum energized hours without solenoid failure: 43800;
- Service life time: 25 years;
- Valve’s construction materials shall not present potential reactivity that could lead to galvanic corrosion;
- Valve shall be capable of endure sea water contamination up to 20% on
volume between 4°C and 45°C;
- Valve’s construction materials shall not allow the development of bacteria on fluid;

7.6 Pressure switches

7.6.1 Each rack hydraulic return line shall have a high pressure switch for indirect indication of the position of the valve. This pressure switch shall be adjustable from 300 to 3,300 psi.

7.6.2 The above listed pressure switch shall have hermetically sealed contact, SPDT, 1 A type at 24 Vdc. The contact shall normally work closed, opening in abnormal operation conditions.

7.6.3 The pressure switch shall have IP-56 encapsulation protection level, appropriate for operations in the conditions established in item 3.

7.6.4 All parts in contact with the fluid shall be made of AISI-316 stainless steel.

7.7 Pressure Gauges (Manometers)

7.7.1 Each line to actuate the SESDVS or of the manifold mode of operation shall have a pressure gauge in accordance with I-ET-3010.00-1200-800-P4X-013 - GENERAL CRITERIA FOR INSTRUMENTATION AND CONTROL PROJECTS. Also, the following additional requirements shall be met:
- Connection: top ½" NPT male;
- Pulse damper: required;
- Glycerin filled: required;
- Back rupture disk: required;
- Double scale in kPa and psi: 0 – 27,600 kPa (0 – 4,000 psig) for the SESDV valves.

7.8 Filter

7.8.1 One filter shall be foreseen on each of hydraulic fluid supply lines inlet, with the following characteristics, in accordance to ISO 16889:
- Body: AISI-316;
- Filtering element: AISI-316;
- Mesh: 3 µm abs (β≥200);
- Connections: 3/8" NPT socket;
- Differential pressure indicator: required;
- Operation pressure: as in item 3.
8 IDENTIFICATION

8.1 All connections and instruments shall be clearly identified.

8.2 The identification plates shall be made of AISI 316L with lettering in low relief fixed by stainless steel screws.

8.3 The rack shall be clearly and permanently identified on its front part with a 200 x 75 mm plate with the following inscriptions respectively:

PN-1210009
RACK DE CONTROLE DAS SESDVS
P-XX

8.4 The manifold blocks corresponding to each well shall be equally identified with plates indicating the well number.

9 DOCUMENTATION

9.1 Complete documentation of the SESDVS Control Rack, covering all devices and services, shall be supplied with the proposal, for approval, and for final acceptance.

9.2 There shall be supplied with the proposal, in the number of copies defined at PETROBRAS documents, at least the following technical documents:

- Technical specifications comprising: equipment, accessories, panel and materials;
- Data-sheets and brochures for each equipment;
- All equipment and installation data including: material list, equipment list, spare part list, power consumption, weight, panel lay-out, etc;
- Complete description of services, tests, etc.

9.3 There shall be supplied for approval, in the number of copies defined at PETROBRAS documents, at least the following technical documents:

- Technical specifications comprising: equipment, instrument, accessories, cables, tubing and materials;
- Data-sheets and drawings for the panel and each instrument;
- Installation drawings including general arrangement, electrical diagrams, hydraulic diagrams, wiring diagrams, cable/tubing list, material list, equipment list;
- Test procedures;
- Certificate of materials etc.
- Manifold Documentation
9.4 Complete SESDVS Control Rack certified documentation shall be provided in digital media (USB flash drive) and in as many copies as requested by PETROBRAS documents.

10 ACCEPTANCE TESTS

10.1 The following tests shall be performed at MANUFACTURER installations (FAT) prior to delivery:

- Visual inspection;
- Tightness/leakage;
- Functional Test, Loop test;
- Electric Isolation;
- Cleanliness class of hydraulic fluid;
- Calibration, configuration and diagnostic of each field instrument.

10.2 After the installation of the equipment on board, at least, the following tests shall be repeated (SAT):

- Visual inspection;
- Tightness/leakage;
- Functional Test;
- Loop test;
- Electric Isolation.

10.3 For Site Integration Tests (SIT) all the tests performed during FAT shall be repeated.

10.4 In order to shorten the time at the tests on board, the documentation shall be checked at platform office.

10.5 There shall also be provided all functional tests regarding operational and safety aspect, as detailed at the Tests Program approved by PETROBRAS.

10.6 All tests shall be according to IEC 62381.

10.7 SIT shall be executed with the SESDVS Control Rack interconnected with the Hydraulic Power Unit.

10.8 It shall be submitted to PETROBRAS, for approval, detailed FAT, SAT and SIT programs 60 (sixty) days in advance.

11 PACKING REQUIREMENTS

11.1 On completion of testing at factory all equipment shall be prepared for shipment and storage.

11.2 Equipment supplied loose shall be packed and crated for transport. In addition, if some rack equipment is susceptible to transport damage, shall be removed from
de System Rack for separate packing and crating.

11.3 The packing shall be designed in order to withstand transportation by sea on a tug deck, being exposed to soaking by waves.